2 Exploiting Panel Datasets

2.1The uses of panel data

Much econometric modelling is based on 'one-dimeasiaiata sets: time-series or cross-
sectional analysis. Both these methods have pheblems. Time-series models excel in their
treatment of dynamic effects, but suffer from the ooillinearity of series. Cross-sectional
analysis makes use of a wide variety of functionam& but is necessarily limited in its

treatment of dynamic effects.

Pooling data on individuals over time into one detadlows the econometrician to deal with a
range of relationships between units of informatiothmwia single coherent structure. Panel
data can be seen as cross-sections observed ardl dvdietime, or multiple structural time-
series. It is argued that by combining the best of otitds better estimators resultThe use

of all information available within the same modebkes for inherently more efficient
estimators, while the larger amount of data in@gsdbke degrees of freedom for hypothesis
testing. This latter effect produces increased fléxibin model design by allowing more
scope for the use of instrumental variables, simulisemuation specifications, lagged

variables and other techniques needing many degrésedom.

More importantly, a panel dataset enables the rdsmatc discriminate between competing
hypotheses indistinguishable under simpler models. i@anastimating the success rates over
time of a training program. The hypothesised rafastigp may be

Y= f(xe, B.ai) (2.1)

! In the context of this discussion "better" merelfiere to some arbitrary criterion such as mean-squared
error or efficiency used to evaluate different models.
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2 Exploiting Panel Datasets

where o; is some element specific to the individual i (“indial heterogeneity" or an
"individual specific effect") which does not vary oveme; for example, an element of
"motivation”. Initial results find that 40% of theasks pass each exam, but do the same 40%
pass every exam, or does everyone have a 40% chapessig? In other words, is this
unobserved effect significant in determining the ooe® If the termy was identified and
found to be a significant factor in the probability ofspiag in any particular period, this
would imply that someone passing one exam is morg likgbass or have passed other exams.

The hypothesis that the same 40% pass each time app@arbkely.

This effect could not have been identified by treatigdata as purely cross-sectional (that is,
with no connection between observations in diffepmriods). Treating each period equation
separately means that the individual-specific effectat identified and must be subsumed into
the constant term. Pooling all the data would appeahow serial correlation in the errors.
However, a panel model could determine the relatmportance of the unobserved

heterogeneity; and distinguish it from the apparsetial correlation” in the results.

Panel models provide the opportunity to test and cbritio a much wider range of
measurement errors and unmeasurable effects thennthke sxample above. By using the
panel to its full extent, both intercepts and slopefiooafts which vary over time and/or
individuals can be estimated from structural or reddoeahs. This gives great scope for
flexibility in the model without having to identify lathe relevant variables: the ability to

"group” observations by period or individual is all tlsaheeded in many cases.

Hsiao (1986, pp5-7) provides some examples, reproduced imf&gure 2.1, where the
apparent cross-sectional relationship is belied by thelmstimates. The bold lines represent
pooled estimates (that is, ignoring any panel stragtuwhile the others represent the "true"
structure which could be revealed by the appropriate patielagors. In Figure 2.1(a), the

panel estimates have common positive slope coeffigieas does the pooled estimate.
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2 Exploiting Panel Datasets

However, as each individual has a different infa,ce the pooling estimate is clearly
inefficient. In Figure 2.1(b) the effect of ignoringferent intercepts means that the pooled
estimate no longer even has the correct sign ®oslitpe. Thus, although only intercepts vary
over individuals, this suffices for the pooled restitgive an entirely erroneous view of the
relationshiﬁ. Moreover, there is no a priori indication of httiwe pooled slope is biased from
true. Identical slope coefficients but different unnieed effects have led to very different

pooled estimates in (a) and (b).

In Figures 2.1(c) and (d) the slope coefficients aly.v Clearly a pooled regression on the
individuals in Figure 2.1(c) would indicate little or relationship between the variables on the
x and y axes, while in Figure 2.1(d) the pooled regpasappears to produce a nonlinear
relationship. A properly specified panel model would Ible #o determine the true structure of

the relationship.

The ability of panel techniques to combine informatmm individuals and time is their
strongest asset. Unfortunately, this ability caso @lause significant problems. The rationale
for panel models is that interrelationships over tame between individuals are constant and
so can be factored out. If the assumed interreldtipns wrong, then the error may affect all
elements of the regression. A misspecified crosgesein period t (for example) should not
affect estimation of the relationship in t+1 which suskfferent data; but if an individual
specific effect is misspecified, it may corrupt theules from all periods. This is especially

relevant in non-linear models; see section 2.4.

The most obvious, and important, source of misspatiic is selection bias. Panels, by

2 For example, some cross-section studies carried ouheyauthor appeared to reveal a positive

relationship between the proportion of manufacturing DPGnd energy consumption in developed countries.
A simple panel study using the same data showed a negelat®nship, a reverse of case (b) above. The
implication was that the cross-section results wptgisus, arising from significant national differencesd

the original model was too crude to pick this up.
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2 Exploiting Panel Datasets

their very nature, are more susceptible than other skis to missing observations, a problem
which increases as the panel grows over time. Kkample, consider a two-period panel
composed of welfare recipients. Those who rematherpanel for the second period may be
less "employable”, if those who have found jobs leteepanel. Whether this attrition is
random or correlated with the dependent variablesusial for the results of any estimation.

At best it reduces efficiency; at worst, it cartalisresults significantly.

This issue is extremely complex for panel models, amcently unsolved in the general case.
There is some current research on this issue (sedelR{@990) and Ritchie (1994) for a
theoretical treatment; Bell and Ritchie (1993b, 1994)afstudy of selection bias in the
NES); but even simple static models with multinormalesigal errors present formidable
computational difficulties. The applied work for thigesis presents a practical but rather ad

hoc approach to selection bias.

A second (and much less frequently discussed) souroarrof peculiar to panels is an
overdependence on the ability to account for unmeastagdbles. Consider the training
example taken over two years, when the underlyindiVation" changes significantly and that
the change is reflected across all individuals. Fegression models may be considered:

(@) y,= U+ xS+ un
(b) Y= H+ xi Bt Ui
(© Y= Ut x B+ aituy
d) yi= 4+ xe Bt ait ui

(2.2)

for t=1,2, i=1..N. (2.2a) and (2.2b) are cross-sectiomaels; (2.2c) and (2.2d) are panel
models. However, in (2.2a) and (2.2c) the coeffisi@re assumed to be constant over time,
and so only (2.2b) and (2.2d) can identify the structahst between years one and two.
Clearly (2.2a) is the most restricted model and (2t@e)least, and the performance of the
estimators will reflect this; but it is difficult teay whether the flexible cross-section (2.2b) or

the poorly-specified panel model (2.2c) will perform bett€hapter nine returns to this in an
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applied context.

The problem becomes more important when variationenstbpe coefficients is allowed. If

performance in a training program is improving asukerent, teaching and testing methods
improve, it may be desirable to allow the slope coeffits to vary over time. Separate cross-
sections, such as (2.2b), allow for this. So mayreelpaodel, and one such as(2.2d) is at
least as efficient as the cross-sections. Howethrer ,overwhelming majority of models used in
applied work are of the form of (2.2c) with a time-vagyintercept. If the slope coefficients

vary significantly the cross-section may give betesults. Relying on the panel attributes of

parsimonious models instead of using more generalfgagioins can lead to poor outcomes.

This question of misspecification is not limited tapls, and the particular problems caused
by the use of panel models do not raise any signtficew issues. A general discussion of the
misspecification of panel models is beyond the scopei®thesis, and so is only considered in
relation to the particular matter at hand. Unlessi@xplstated otherwise, it is assumed that

the models are correctly specified.

The unmeasured effects in a panel model structure m&ixée' or "random” with respect to
the model. This has practical and theoretical apresgces, and leads to different models,
estimation procedures, and possibilities for infereri€ensider a simple linear panel model:

Yi= Xe B+ L+ ue = ait & (2.3)

In this model, an individual-specific term is assurteedapture all the omitted informatiom

is the mean intercept for all participants; is the individual variation arouna This term is
sometimes called an "incidental parameter”, asfdbes of interest is the value 6f The
concern about the; term arises from its effect on the other variablentifying its value is

often not required.
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2 Exploiting Panel Datasets

The individual-specific terms may be deemed "fixedais, parameters of the model). They
then amount to a set of coefficients on individualkeswe dummy variables which may be
estimated by OLS (or any method appropriate to the asbwemor structure ofi). All
results are then_conditionah these parameters. Note that OLS estimateseofidinmy
coefficients are inconsistent while T remains sr{gdle section 2.3), but this does not affect

the consistency of the estimates3aiindu.

However, ifo; is considered "random” (that is, a random compioakthe variance of the
dependent variable), then autocorrelated residualm @S estimates will reflect the

distribution of botheix andoi. Note that the error term in (2.3) in vector fornedraes,

u=Jrait &

2.4
E(u)=0 E(uu)=Jrdro?+ 1102 24

where 3 is a T-vector of ones. OLS is unbiased and comsjstleut inefficient unless.’ is
zero (and assuming zero correlation betwaeando;). GLS solution methods may be used to

identify the two distributions and estimate (2.3) &fitly.

Section 2.3 concentrates on the practical effect férdnt assumptions; for the moment,
consider the theoretical implications. The chaiclargely a subjective one, and most texts on
panel data consider how this choice may be made.aoH€92) suggests that the key
theoretical issues come down to (a) what is the purpbske study? and (b) what is the

context of the data?

The argument is usually based around sample versus popuaitthn If interest lies in the
characteristics of participants in the sample, a@hef participation list is exhaustive, then a
fixed effects model may be most appropriate. If theiaito determine population parameters

from a sample, then the random-effects specificatiap be more useful.
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For example, in a study of training programmes iredgifit industries over time, a significant
industry-specific effect may be the result of instdoélly-based practices. The size of the
effect may be useful information in itself, enablingegictions for each industry and
facilitating inter-industry comparisons. In such @edt appears reasonable to treat these
industry-specific factors as fixed, and allowing #edent constant term for each industry
captures that effect. Interest lies in using therbgemeity as a predictive and explanatory tool
for the behaviour of individual industries in the samgfeall industries of interest are included
in the survey, then being unable to predict the sizéhisf effect for other industries - a

consequence of the fixed-effect assumption - is iragiev

Alternatively, consider the effect of training pragimes on individuals over time. It is
plausible to assume that each employee responds to tiraimroe in a unique manner which
persists over time. However, the interest is lasthese individual differences but in the
overall effect of the programme. Making general jptezhs for the programme requires the
distribution of these individual effects over the worke. Accordingly, the trainees in
guestion are assumed to be random drawings from the gbigoulof workers with

correspondingly random unobserved traits. Then thHerpesince of a new participant on the
program can be predicted with more confidence tharxtrgolation from the specific (fixed)

heterogeneity of current trainees.

As a third example, the applied work in this thesstes around Mincer-type wage
equations where the worker is the observation unithileMacknowledging that the NES
remains a sample drawing, with hundreds of thousahaglividuals appearing in the dataset
there is some justification for approaching it as a pmi. The random-effect and fixed-
effect specifications can both be justified on the popmritgample argument. On the other
hand, the unobserved characteristics of each pensorofaless interest than how these
characteristics manifest themselves over the popualaca whole. The aim is to be able to

make predictions about the population, not to identify ane particular individual's wage.
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Thus a random-effects model may be deemed apprcf’priate

With heterogeneity over both individuals and timecoabination of fixed and random effects
may be employed. Consider extending (2.2) to includsffant specific to period t::

Yi= xe B+ U+tu: u=ait At & (2.5)

A common specification in applied work is to have effect fixed and one random; models
with both effects fixed or random are less commonfterOthis is for practical reasons:
introducing dummy variables for the "large" dimensinay be cumbersome and inefficient,
whilst random-effects estimation of the "small" dmsion tends to be complex and inefficient.
As panels tend to be "short and fat" (that is, witrelatively small and N large), a common
solution is to estimate random individual effects @émdntroduce time dummies for the time

effects.

To some extent this also reflects research interdgiisch panel work is done on micro-data,
with population inferences being drawn. There iselitihterest in the performance of
individuals as opposed to the whole, and the numbepashmeters in a fixed-effects
specification may be very large. A better solutiotoifok for any overall distribution of such

individual effects.

For time effects the opposite holds: calculatingisttidution” of time intercepts is likely to be
fairly meaningless, but by treating intertemporaladéhces as parameters of the model there
is more scope for comparing directly different periodsixed effects are particularly useful
when slope coefficients are allowed to vary: thelion of coefficients through time may be

very enlightening.

In fact, the estimation method to be discussed usedixed-effects method, for practical reasons
outlined in the next section, although knowledge of tidévidual effects has little practical use.
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For example, estimation on the full NES panel hat lof interest to say about the
"motivation” of some hundred thousand individuals; #&utobservable shift in the intercept
over time is of interest. thus a random individutiéat and a fixed time effect appears

sensible.

All this assumes that the underlying structure of tloelehis known. If the true structure is
unknown, then the feasibility, efficiency and csetemcy of the specifications must be

considered.

The fixed-effects model is distribution free; it mnditioned on the extant values farwithout
the need to describe the source or distribution of éffiect. It is robust to alternative
specifications of the individual heterogeneity becateedistribution function is irrelevant to

the estimation method.

Estimation of the random effect requires further agdioms about the error terms. This is not
necessarily a significant drawback. Although ML restion of the specification in (2.3)

requires a specific functional form for the panel éfec GLS estimation is feasible and
practical with merely a consistent estimate of theaciance matrix, given by fixed-effects

estimates.

Much more serious is the necessary assumption of indiepes of the explanatory variables
and the random effect. Mundlak (1978) argued that sl feffects model is conditional on
the explanatory variables, and that the random-effecidel is a misspecification that fails to
take account of this conditioning. An appropriate rhetieuld use E{; | x). Replacingi in
(2.3) by a linear approximation

E(ailx)=Y xtatw @_N0Oqg5) (2.6)

where a is a vector of constants to be estimated, allows dorrelation between the

18



2 Exploiting Panel Datasets

unmeasurable and explanatory variables. Mundlak then stedgeestricting the model to a
function of the mean value of the explanatory variables

E(ailx)=xa+wm w_N0O,07) 2.7)

and it can be shown (Hsiao (1986) pp 44-45) that the GLSastirof B collapses to the
fixed-effects estimator; the difference between'th&" and "false" GLS estimates pfis the
GLS estimate of a. Therefore, there are not tvamleis: the apparent difference is a

specification error.

In a more general approach, Chamberlain (1984) notes ithat is correlated with (x.xi7),
yir iS potentially a function of all the explanatory vhies and any estimator should take
account of all lead and lag values @f X his gives a multivariate regression of all teg¥x1)
on all the xs (TxKT) with an arbitrary error structure:
Y= Zir{ Uit

E(u:)=0 E(uius)= Utzs (2.8)

where Z = [x1 ... %r]. This is the basis for Chamberlain's "minimum-dis& panel

estimator, described in more detail in section 2.6.2.

Mundlak's result depends on the very restrictive assampt the source of the heterogeneity,
while Chamberlain's is much more general, but botherars important point: the random
effects estimator is unbiased and consistent onlyhé explanatory variables and the
heterogeneity are independent of each other. Tteml-Bffects model, giving parameter
estimates conditioned on the explanatory variabkesinaffected. This idea of the fixed effects
model as a conditioning estimator (as opposed tontrginal estimator of the random-effects
model) acknowledges the fact that the former isdvdr both fixed- and random-effects

specification$

* Note that, if the assumption of zero correlati@tween the explanatory variables and the individual

heterogeneity is violated, then cross-section eséisnawhich ignore the heterogeneity completely, afgb
be biased and/or inconsistent.
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The fixed-effects estimator is therefore flexible aoldust; however, generally it is inefficient.
This is because the fixed-effects approach seeks fatasmdividuals or periods, and so
restricts itself to smaller samples relative to mluenber of parameters to be identified; the
random-effects model looks for common charactesgsdind makes holistic assessments of the
data. For example, as the number of periods shrinkaking efficient use of information
across individuals becomes increasingly importante lérge number of parameters to be
estimated in the fixed-effects model becomes a ggpwurden. As N large and T small is a
common structure for panel datasets, then a corisrstetiom-effects model is generally more
efficient. Taylor (1980) estimated that, if the assuomgt of the random-effects model hold,

then this construction is more efficient for theesafl >2, N-K>8) and (T>1, N-K>9).

imation of satic L »

This section is only intended as a brief introducttonsome aspects of panel estimation
methods, so the mathematics are kept to a minimwhraesas covered are selectiverhis

section concentrates on a few basic models, witmdWiduals and T periods, as the
gualitative aspects of these carry over in a strioghrd manner to more complex
specifications. In chapter 5, the fixed-effects sptibns implemented in the analysis

software will be discussed in more detail.

As focus of the concern here is in illuminating certaspects of panel models (and not
developing the econometric methodology), this eadhegins with the simplest models. The
general linear model is

Yii = Xit ,3“ + Uit (2.9

® Full discussion is provided in Hsiao (1986) or Matyas anegsSee (1992). In the following discussion a
balanced panel is assumed; that issTET for all i, j. This does not change the resultseriatly.
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2 Exploiting Panel Datasets

with i=1..N, t=1..T, andixbeing a (1xK) vector of explanatory variables. Thisved any
parameter to vary over time and individuals, giMiNg xK) parameters in NT equations; the
model is unidentified without some restrictions oe fbarameters. The type of restriction
imposed can lead to very different models; so th&tone is removing or adding variables
before re-estimating, the choice of initial modeynnfluence the path taken. For example, a
pooled model on the data in Figure 2.1(d) may indithtée a quadratic form is needed,
whereas an initial panel specification could indicdiat this is unnecessary. Thus, while
panel estimates may be fairly robust in many casas,ddies not obviate the need for general

tests on the specification of the model.

The simplest parameterisation is the pooled modetystem form,

y=XB+u (2.10)

where y, X and u are stacked to give NTx1, NTxK, Bidl matrices. There is assumed to
be no significant consistent variation in the cagffits. Separate time-series or cross-section
estimates give the same result as the pooled mdaiet, the greater combined number of
observations in the panel lead to smaller standaoiser Estimates are consistent whether N,
T or both tend to infinity. The estimator is eféint under the assumption that the residual
errors have no time- or individual-specific elemelfithe disturbance is non-spherical for other
forms of heteroscedasticity or autocorrelation, ahyhe usual transformation or estimation

methods for the particular form of the error termappropriate.

2.3.1The covariance appr oach

A first extension to (2.10) is to let an intercept vacyoss individuafs as in (2.3) above. For

true panel specifications, a number of solution mettimt®me appropriate. This section

demonstrates a common approach, using techniquevémaamce analysis.

° Time-specific effects are dealt with in a qualitatively identical manner. The relevant equations
are found by swapping T and N and the t-i subscripts.
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If the individual variationo; is treated as a fixed effect, it becomes a parantetdre

estimated. A simple solution is to employ N dummyafales, such that

y=XB+1yUJr Atu (2.12)

where A = P oz .. o], an Nx1 vector of the individual fixed effectsy is the N-element
identity matrix, andwis a T-vector of ones. Equation (2.11) is known &slehst-squares
dummy-variable (LSDV) estimator. The N+K parametarthis equation can be estimated by

OLS'. This solution has a significant drawback. Conside normal equations:
B XX X'1wOJr B Xy
= (2.12)
A InOJr X InO30 37 InOJIry

This requires the potentially formidable task of itiver an (N+K)x(N+K) matrix. A more

practical alternative is to take deviations fromvi@lial means. For an individual equation, let

Vi = yit-;/i:(xit';(i )B+ ui-u; = X B+ Ui (2.13)

The individual effect, constant over time, drops @uthe regression. The system equations

become

y= XB+0 (2.14)
and the normal equations are now
B,= (XX)'(X9) (2.15)

which only involves a KxK inversion. The panel effeecan be found from the individual

means:

&=y~ x B, (2.16)

(2.15) is the "within" or "covariance" estimator (fraime analysis-of-covariance technique

" Note that estimates of the individual-specific effealy become consistent for large T not large N. The

estimates of the slope coefficients are consistamitifand/or T large.
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used). The estimated slopes in (2.15) are BLUE andistensif N and/or T is large;
however, the estimates of the individual interceptdile unbiased, are not consistent unless
T is large. Expanding (2.16):

aGi=(xB+u+a)-xp,

:;<i(,3',[}w)+ai+?12uit @17)

As E(w) = 0, the estimate ofi is unbiased, but remains inconsistent unlessolas

1
& - m+?2un (2.18)
t

N -

This is because the number of parameters to estimaiages with N and there remains

insufficient variation amongst individuals to uncotieterogeneity whilst T is small.

Now consider random effects, distributed over imtligils according to some function. The
random individual effects and the residual errorehawe estimated together. Define

vi=aitu: ai_N@O,o7) u_N@Oo?) (2.19)

Other covariances are zero. The structure of thar@nwce matrix for an individual is

E(vivi)=JrJroa+1100=Q; (2.20)

This is called the "variance components" or "ermmponents” model, for obvious reasons.
OLS is inefficient, as the error termgws are serially correlated. However, GLS is both
feasible and practical. Under the assumptions of (2.8)cbvariance matrix for the

regression is block-diagonal, as is its inverse:

Q=diag(Qi1,Qs,---Qn)
(2.21)
Q*=diag( Q. Q5 ... Q)

with
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1 1 1
Qfl:?{[H'_JTJT'j'*'w?JT JT':| Y=

2
Ou

— 2.22
g+ Tos (222

T
The first part in the inverted variance term caladadeviations from the mean of any matrix
to which it is applied; it is the same matrix usedjéoerate the within estimatoiw. The

second part calculates the mean of a matrix and medigliby a constant which reflects the
relative variances of the two error components. fidienal equations for the GLS solution are

FE -

gls

The covariance matrix, and thus the solutionifocontains two additive terms. The structure
in (2.22) indicates one term should reflect "withintgyd variation, and the other the
differences between group means - "between-group” \@riati It can be shown (see, for

example, Hsiao (1986) pp34-41) that the GLS solution breaks daan

By = DB+ (1k-D)B, (2.24)
where the "between" estimator

[;b: [Z(YFY)'(YFY)J [Z(YFY)’(}-;)J (2.25)

is calculated by taking the deviations of inter-groupans from the whole mean of the
regression. The GLS estimate is a weighted avepadke within and between estimators,

with the weights given by

A:[Zz(x“'z)'(X"'Yi)””TZ(X-Y)'(z-%j [Z(z-i Y(%,-X J

(2.26)

The between estimator, showing the inter-individizlation, is effectively the OLS estimate
on the data, ignoring all panel aspects. The wegl$ provided by the relative importance

of the error components and the size of T. If Dne or ifou is very large relative to.’,
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then the weights are allocated evenly between theestimators, and the pooled OLS estimate
results. In this case either variation among thesasions for an individual is small or the
number of observations for an individual is small; d@n variation between individuals is the
dominant force. Alternatively, i~ or T is large, the within estimator dominateg o is
large, then individuals are sufficiently differeatmake separate estimation on each individual
a sensible strategy. If T is large, between-groupatran becomes irrelevant: there are
enough observations for each individual to be treased aeparate model. Eachcan be
thought of as drawn once (randomly) and then fixed\fasample drawings which are large

enough to be estimated separately.

Feasible estimation of (2.23) requires known or comligteestimated error components.
Consistent estimates are given by the residuals Beparate covariance and pooled OLS
regressions. The error components model can alsstimeated by ML. When T is small and

N large, this method is wholly consistent; howewvig N is small and T large, the estimate of
o« Is inconsistent. When T is large, the model b&soanseries of N separate regressions; the

ML estimate collapses to the covariance estimat® kisiao (1986) for details).

The covariance estimator can be used on the rand@ntsefmodel; obviously, the
transformation removes the individual effect whateite nature. For large T the two
estimators coincide, but by ignoring the informatmm within-group variance rather than
using it, the covariance estimator of a randometdfenodel is less efficient than an error
components model when T is small. However, thelgameffects model requires zero
correlation between the error-component and the explanaariables for consistency and
unbiasedness. This is not an issue for the fixedtsffeodel as the estimates are conditioned
on the parameters. Thus covariance estimation ahdom-effects model may be consistent

when GLS estimation is not.

(2.11) is the simplest of panel models and can be expamdedny ways. Consider adding
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time- or individual-specific variables; that is, tbeefficients are common to all, but the

variables are not:

Y= Xt B+ z0+ U+ ai+ uy (2.27)

z is a vector of individual data which does not cleapger time. In this model, a fixed
cannot be separated from the coefficiant the covariance transformation is used. Random
effects can still be identified. The minimum-distarestimator of Chamberlain (1984) uses

invariant individual-specific vectors for its initiaktimates of the parameters.

Another simple extension is to have both time- antithoal-specific effects:

Yu= Xt Bt Ut ait At ui (2.28)

This presents no new qualitative aspects. If botlctsffare fixed, then some restrictions are
needed to prevent exact collinearity between the dusnniieboth effects are random, then a
variance component for time has to be calculated.s Tdguires a third, "between-periods”
estimator, which is the equivalent of the betweenigs estimator used to find the individual

variance.

However, the quantitative effects of incorporatingrenfixed or random variables are quite
different, especially if the panel is unbalanced (tbatindividuals have different numbers of
observations). Adding time dummies is a straightészdvmatter and the balance of the panel
has little practical effect. However, calculatingeav error-component is complex, and if the
panel is unbalanced the problem is significantly hard8eneralising (2.22) for unbalanced
panels merely requires the substitution offdr T, but the three-component equivalent of

(2.22) has six additive terms; with unbalanced panelmteese is exceedingly comp?ex

In addition to the theoretical considerations idtreced in section 2.2, two additional elements

® See Wansbeek and Kapteyn (1989) for the solution to thedamced three-component inverse.
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have been introduced. First, the covariance esimmtonsistent (if not necessarily efficient)
under a wider range of assumptions. Secondly, the@riemce estimator is easier to estimate
than the random effects one. The practical diffegsrincrease if the panel is unbalanced. If
the efficiency loss is small, or if collinearity tieen the individual heterogeneity and the
explanatory variables is suspected, then the error-amnpo model loses its appeal. The
implication for the choice of fixed or random effe@stimators is clear: the fixed-effects

specification, although inefficient, is both trac&ahhd robust.

Linear panel models more complex than those discuss®a: add little to the methodological
issues raised, and are not considered here. How#weee general features of linear models
can be identified. Firstly, the dichotomy betweeed and random effects remains strong as
models become more complex. Although some solution adgth such as analysis of
covariance, may be applicable to both, the result®reror other assumption are general
sub-optimal in some way. This is because the choicearmdom or fixed effects leads to
qualitatively different assessments of intergroupntgrperiod influences; applying one model

to both hypotheses implies either irrelevant or refetat unused information.

Secondly, the general structure of the solutions rmdlipersists. The fixed-effects
specification may be seen as a question of effectieeofislummy variables or covariance
transformations. The random-effects model hasraptEx error structure requiring GLS or

ML estimation. Choice of fixed or random effectadatines the whole approach to estimation.

Thirdly, the more complex the models, the biggerpitaetical advantage of the fixed-effects
approach. The difficulties of estimating fixed-effeatedels increase arithmetically with the
complexity of the models; for random -effects, thktionship is more closely exponential.
While the fixed-effects model does involve lotsio€idental' parameters, generally the model

can be transformed to remove these eﬁeCtAIthough the number of parameters in the

® Often a combination of dummy variables and transétions is used. In the models to be described in
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random-effects model rises much more slowly, igwathe distribution of these effects

becomes increasingly problematic.

2.3.2T he differencing approach

Where there is only one random effect, differep@n the equations is a practical alternative
to the covariance approach. In both (2.11) and (2.19fereliicing removes the individual-
specific effect:

Yie = Vi~ Yiea™ (i~ i) B+ Ui - Ui = X B+ Ui (2.29)

with E(ut)=0. Estimation can then proceed as usual. When The differencing approach

and the covariance estimator coincide.

Differencing has significant advantages over thgapance estimator in dynamic linear
models, to be detailed below. It also sharedigieibutional advantage of the covariance
estimator: namely, that no distribution for theiwidial effect needs to be specified and that
any correlation between the individual-specific effentl the other explanatory variables will

not lead to inconsistent or biased estimators. kewyefor static models it is less appealing.

Firstly, the differencing estimator is less eHiti than the covariance estimator - compare
(5.90) and (5.124) for the expected variance of the regresdihis is because, although both
models involve N restrictions on the model,x gnd yr each only contribute once to the
information set of the differencing estimator, wé@s all observations contribute equally to the

covariance estimator.

Secondly, differencing is clearly not appropriate forandom-effects specification. The

implication of the differencing approach is that timelividual effects are fixed nuisance

chapter 5, individual effects are transformed out whilerdies are used for time effects.
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parameters to be removed before estimation of the owsfiicients proceeds. Thus, for a
random-effects specification, differencing will esg efficient than GLS estimation for the

same reason that the fixed-effect covariance esimmitnefficient.

Thirdly, the estimates of the differencing approach less amenable to interpretation if the

coefficients are allowed to vary over time. Coasid

Y= Xt Bt ait Act Ui (2.30)

Estimation of this equation by differencing leadsh® model

Yi= X B+ Xit—lEt+ /Tt'*' Uit (2.31)

whereyi=yi-yirs and the other variables are similarly defined épeation (5.129) for details).
For the slope coefficients both levels and diffeesnm the coefficients are being estimated,
and with a little manipulation all the slope coeffit® are identifiable. However, only the
change in the time intercept is being estimated, sanonly the relative values of the constant
(relative to eitheo or A1) can be identified from the model. The levelshef intercepts can of
course be recovered from the equations by calculatengrédicted means of the regression for
one period but the fact that the returned coefficianéschanges rather than levels seems to be
ignored by most author’s Section 5.4 discusses this issue and a restrictedagtpwhich

falls between the models of (2.29) and (2.30).

Allowing for individual heterogeneity has seriousadisantages when a non-linear functional
form is specified. Because of the additive naturtheflinear equation, estimation of the main
coefficient vector and the panel effects could be sgpdy for example by covariance or GLS

estimation. Under a non-linear specification, thay no longer be possible.

% For example, the GAUSS program DPD returns "“intertepthe fact that only T-1 are returned

indicates that these are actually changes in thecaper
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Take a more general form of (2.5):

yit: F(Xitiﬁuuiai’At) (232)

where F(...) is some function non-linear in the patens. As mentioned earlier, if the panel
terms to be fixed coefficients, these will only beneated consistently if the right "dimension”
of the panel is large; that is, a consistent eggnof a time-specific effect requires large N,

and a consistent estimate of an individual-specifeceneeds large T.

Assuming a typical panel structure with T small and fgda consistent estimates xfare
possible but noti™. In a linear regression with additive terms tHses not affect the
consistency of the main parameter estimates. Howei#®32) involves maximising the jaint
probability of all the parameters, and so inconsiséstimates of the incidental parameters
will lead to the main parameters being inconsisteasiymated (see Hsiao (1986) pp159-161

for an example).

This problem was considered in some detail by NeynmahScott (1948), who suggested
finding alternative functions for the main parametaetsch are independent of the incidental
parameter’§. Hsiao (1986) illustrates some simple cases, but nbggsirt general such
functions are difficult to find. Perhaps most impothgnthere does not seem to be one for the
probit model; that is, there is no consistent esttimfor small T for a fixed individual-effect

probit model.

An alternative is to use a random-effects modeddifeg to a multivariate non-linear regression

model with the likelihood function of the main paraene augmented by the marginal

' This is for the same reason as in the linear;casenely, that there are insufficient observationgach
individual, but there are a large number of observafimnsach period.
2 An alternative under investigation by the authordsuse linear approximations to the non-linear
functions; for example, replacing a probit or logit fomith a linear probability model.
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distribution of the random effects. The random-¢ffespecification does at least provide
consistent estimators, and simplifying assumptions lta made to reduce some of the
complexity of the models (see Hsiao (1986) pp164-167). It lmsliious disadvantage of

needing a specific distribution for the random efféEhere is also the potential for correlation
between the random effects and the explanatory vasiabbich is less easy to resolve than in
the linear case: using the linear specificationsiohdlak (1978) or Chamberlain (1984) may

impose unwarranted restrictions on a non-linear model

Thus, fixed-effects models are relatively simple buy mat provide consistent estimates of
any parameters. In contrast, random-effects egrnare consistent, but only as long as

assumptions on the distribution and independence efffiets is justified.

: | et

Dynamic panel models can be extremely informative. Agmuadynamic effects could result
from heterogeneity, serial correlation, or (ie ttase of non-linear models) state dependence.
Consider finding that a candidate who has passedexam is more likely to pass another.
This could be because candidates differ in their adsli(heterogeneity); because those who
pass have acquired (randomly) some extra knowledgehwhiuseful in both exams (serial
correlation); or because those who pass avoid rasiisso have more time to study for
remaining exams (“true" state dependence). If a dgnamdel can be constructed, then
testing for combinations of these various forms oktand spurious state dependence is a

possibility.

2.5.1L inear models

Dynamic models for panels are more complex than states. The reason is the initial

condition of the dependent variable. Let
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Ya= X Bt YVt Ut U W= ait At & (2.33)

yit and y1 depend or;, which implies that the initial conditiorydoes too - and, potentially,
so does the entire pre-sample history. The problémremove or control for the individual-
specific effect without introducing correlation betweate dependent variable and the error

term. For example, taking first-differences of (2.[@3)s to

( Vi - yit—l): (Xit - Xit—l)lg+ ( Yitr ™ Vit )y+ (At - At—1)+ (fit - fit—l) (234)

where the individual effect has been removed, buethar term is now correlated with the

explanatory variables as Ry i-1)z0.

Consistent ML and GLS estimates may be availableafoange of assumptions about the
initial conditions. However, a relatively simpladapopular solution to this problem is to
difference the model, as in (2.34), and then useurm&ntal variables estimation. The panel
structure itself provides instruments in the form ajgled or lagged-differenced dependent
variables, an instrument set which grows over timenare lagged variables become available
(Arellano and Bond (1991)). Unbiased and consistemairs therefore exist for both the

fixed and random effects.

The dynamic specification has received some criticiS he use of lagged dependent variables
as instruments has been criticised on the grounds mfoa correlation over the long lags
necessary to instrument differenced models. Morddmentally, it has been suggested that
variable-coefficient models which take account ofserperiod correlation a more general way,
such as (2.8) or (2.30), offer both flexibility and cowmsisy without the need for

instrumentation (Chamberlain(1984)).
This thesis does not intend to discuss the relatigdts of these two approaches. Both IV

estimates of (2.34) and more general variable-coefficienodels are available under the

software to be described later. However, most @fafbplied work on the NES by the author
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and others has utilised cross-sectional analydiseovariable-coefficients approach.

2.5.2Non-linear moddls

Estimation of the linear dynamic model is relatvstraightforward. This is not the case for
non-linear specifications. Consider the dynamic-limear form:

Yie= F(Xie» Yiea: B toarin Av) (2.35)

where F(...) is once again some arbitrary non-liigaction. In this case the panel model runs
into severe difficulties. The problem, as for tmedir dynamic model, is the determination of
initial conditions, but it has been complicated byrtbhe-separability of the terms in the model
as discussed in section 2.4. If the parameter essimagsjointly calculated, then estimates of
the initial conditions also need to be jointly caédetl. Unlike the models in section 2.5.1, the
incidental parameters can no longer be divorced ftloenones of interest - and therefore
estimation of the initial conditions (and possibly-peanple history) must be included in the

maximisation procedure.

On the assumption that the panel effects are fixeeledhlier conclusion that the ML estimates
are inconsistent as long as T is small still holdi4oreover, Monte Carlo tests by Heckman
(1981b) suggest that this inconsistency seems much ngmiécsint than for the static case

discussed above.

The random-effects assumption needs informatiom,njyst as for the linear case. Unless y
is assumed to be independentgf the marginal distribution af; needs to be integrated over
yio as well; therefore information oo ys needed. And ifiyis to be calculated, this may
require information oniy, V.2, etcetera if they too depend @n Solutions to this issue have

been suggested, but they are all unsatisfactory foreason or anothér At the time of

13 Suggestions including assuming that the initial conditamestruly exogenous and independent;pfor
assuming that the pre-sample process is in equilibriunth B@se assumptions are very strong and hard to
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writing there appears to be no general consistemba&isir for dynamic non-linear models.

| estimation techni

In recent years there has been some interest in gemeralised estimation methods. Two of

these techniques are briefly considered here.

2.6.1Generalised method of moments (GM M)

GMM developed in the early eighties as a unifying appihado a wide range of proble]r?lslts
name comes from estimators derived by minimisingtaoBmoments conditions in a quadratic
form. As such it shares characteristics with 'tradial' methods such as OLS, but the
minimisation criterion is specified in such a waytthéde range of problems may be treated
within the same overall framework. Thus OLS, Imaad non-linear IV, GLS, etcetera can
be seen as restricted versions of the same basioagsti A properly-specified GMM

estimator is consistent and efficient.

GMM has found a strong foothold in the estimationiimie series models. In panel models its
main application has been in the area of linear dymammbdels, particularly in the
methodology of Arellano and Bond (1991). Their estiomprogram, DPD, uses the GMM
nomenclature in allowing for a range of dynamic djtions and has had a notable impact in

some areas of econometrics.

Because GMM is largely a unifying terminology untiethppropriate functional forms are

specified, GMM as an estimation method per se willlve pursued. The techniques in this

justify in applied work. Heckman (1981b) drops the pretenceonsistency altogether and instead offers
relatively practical approximating solution.

1 Hall (1993) and Ogaki (1993) provide comprehensive surveys ofl @dhniques and applications.

34



2 Exploiting Panel Datasets

thesis can be seen as GMM estimators subject to knestmctions (for example, the linear
IV model and Sargan's test are expounded using the G&tMinology), but this is a
methodological issue. All of the methods used haea lshosen for their practicality without

reference to an overall framework.

2.6.2Minimum-distance estimation (M DE)

Chamberlain's (1984) minimum-distance estimator is argeastimator in that it allows for a
variety of specifications. While GMM and MDE both @masise flexibility in the functional
forms, MDE aims to provide robust and efficient eation of unknown specifications rather

than an efficient technigue for known problems.

The starting point is the recognition that a randividual-specific effect could be correlated
with any or all of the explanatory variables, anddf@e a proper specification for a random-
effects model should be

Yi= Xt B+ Zi ¢ + Ui (2.36)

where Z is a 1xKT vector of all the x variables, as in (2.8)oreover, the variance of;u
should be generously specified given the potential &serbscedasticity and (particularly)
autocorrelation in a panel dataset. Given these resgants, Chamberlain recommends
estimating T separate equations of the form

Yii= Zi ThF Uit (2.37)

Definel' = [y ... i7"]. Then, for a general specification of Va)(u the separate estimates
of iy are asymptotically normally distributed with méaand variance given by the covariance
matrix of these separate estimates. This informasidhen used in a second stage regression
to impose restrictions on the structurelbfn a manner analogous to that of simultaneous

equation systems or GMM methods.
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The slope coefficients in (2.36) may be allowed to vamgr time, which makes the second-
round estimates more complex but otherwise has litidetebn the technique. This approach
can also be applied to the non-linear counterpart of (2.3@}h appropriate adjustments.
However, the linear specification of the panel effidoes imply a restriction on non-linear

models, which may or may not be warranted.

MDE is very flexible as it places no restrictions ba error terms; it therefore has relatively
low information requirements and is robust to the $igation of .. However, the price paid

is that MDE is only efficient within a class of ies&tors imposing no restrictions on the error
term. Any prior knowledge about the true distributionthaf error term implies a more efficient

estimator exists.

A second difficulty with MDE is the large number of pareters to be investigated as T grows.
This is a particular problem if N is relatively smadlK large. Clearly, MDE is also unlikely
to be attractive for random time-effects which womleblve a matrix inversion of order NK.
However, the variable-coefficient fixed-effects estior to be described in Chapter 4 shares
many features with MDE (including the data requiremeigind it seems likely that MDE is a

practical optiofy’.

2. 7Summary

As discussed in section 2.1, the panel structure allorva much richer range of models.
However, it is apparent that the usefulness of the2roomplex panel models is restricted by
the feasibility of the estimator. This is especiailye of non-linear models. The rest of this
thesis is concerned with static, linear models,estimators for these have been implemented

in the analysis program to be outlined in chapters 56andhe rationale for this decision is

Y The possibility of implementing this estimator inettNES analysis software is currently being

investigated.
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examined in chapter 4.
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