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Chapter 2 

Exploiting panel datasets 

 

2.1The uses of panel data 

 

Much econometric modelling is based on 'one-dimensional' data sets:  time-series or cross-

sectional analysis.  Both these methods have their problems.  Time-series models excel in their 

treatment of dynamic effects,  but suffer from the multicollinearity of series.  Cross-sectional 

analysis makes use of a wide variety of functional forms,  but is necessarily limited in its 

treatment of dynamic effects. 

 

Pooling data on individuals over time into one dataset allows the econometrician to deal with a 

range of relationships between units of information within a single coherent structure.  Panel 

data can be seen as cross-sections observed and linked over time,  or multiple structural time-

series.  It is argued that by combining the best of both worlds better estimators result1.  The use 

of all information available within the same model makes for inherently more efficient 

estimators,  while the larger amount of data increases the degrees of freedom for hypothesis 

testing.  This latter effect produces increased flexibility in model design by allowing more 

scope for the use of instrumental variables,  simultaneous equation specifications,  lagged 

variables and other techniques needing many degrees of freedom. 

 

More importantly,  a panel dataset enables the researcher to discriminate between competing 

hypotheses indistinguishable under simpler models.  Consider estimating the success rates over 

time of a training program.  The hypothesised relationship may be 

                                                        
    1  In the context of this discussion "better" merely refers to some arbitrary criterion such as mean-squared 
error or efficiency used to evaluate different models. 

 ) , ,xf( = y iitit αβ  (2.1) 
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where αi is some element specific to the individual i ("individual heterogeneity" or an 

"individual specific effect") which does not vary over time;  for example,  an element of 

"motivation".  Initial results find that 40% of the class pass each exam,  but do the same 40% 

pass every exam,  or does everyone have a 40% chance of passing?  In other words,  is this 

unobserved effect significant in determining the outcome?  If the term αi was identified and 

found to be a significant factor in the probability of passing in any particular period,  this 

would imply that someone passing one exam is more likely to pass or have passed other exams. 

 The hypothesis that the same 40% pass each time appears more likely. 

 

This effect could not have been identified by treating the data as purely cross-sectional (that is, 

 with no connection between observations in different periods).  Treating each period equation 

separately means that the individual-specific effect is not identified and must be subsumed into 

the constant term. Pooling all the data would appear to show serial correlation in the errors.  

However,  a panel model could determine the relative importance of the unobserved 

heterogeneity;  and distinguish it from the apparent "serial correlation" in the results. 

 

Panel models provide the opportunity to test and control for a much wider range of 

measurement errors and unmeasurable effects then the simple example above.  By using the 

panel to its full extent,  both intercepts and slope coefficients which vary over time and/or 

individuals can be estimated from structural or reduced forms.  This gives great scope for 

flexibility in the model without having to identify all the relevant variables:  the ability to 

"group" observations by period or individual is all that is needed in many cases. 

 

Hsiao (1986,  pp5-7) provides some examples,  reproduced in part in Figure 2.1,  where the 

apparent cross-sectional relationship is belied by the panel estimates.  The bold lines represent 

pooled estimates (that is,  ignoring any panel structure),  while the others represent the "true" 

structure which could be revealed by the appropriate panel estimators.  In Figure 2.1(a),  the 

panel estimates have common positive slope coefficients, as does the pooled estimate.  
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However,  as each individual has a different intercept,  the pooling estimate is clearly 

inefficient.  In Figure 2.1(b) the effect of ignoring different intercepts means that the pooled 

estimate no longer even has the correct sign for the slope.  Thus,  although only intercepts vary 

over individuals,  this suffices for the pooled results to give an entirely erroneous view of the 

relationship2.  Moreover,  there is no a priori indication of how the pooled slope is biased from 

true.  Identical slope coefficients but different unmeasured effects have led to very different 

pooled estimates in (a) and (b).  

 

In Figures 2.1(c) and (d) the slope coefficients also vary.  Clearly a pooled regression on the 

individuals in Figure 2.1(c) would indicate little or no relationship between the variables on the 

x and y axes,  while in Figure 2.1(d) the pooled regression appears to produce a nonlinear 

relationship.  A properly specified panel model would be able to determine the true structure of 

the relationship. 

 

The ability of panel techniques to combine information on individuals and time is their 

strongest asset.  Unfortunately,  this ability can also cause significant problems.  The rationale 

for panel models is that interrelationships over time and between individuals are constant and 

so can be factored out.  If the assumed interrelationship is wrong,  then the error may affect all 

elements of the regression.  A misspecified cross-section in period t (for example) should not 

affect estimation of the relationship in t+1 which uses different data;  but if an individual 

specific effect is misspecified,  it may corrupt the results from all periods.  This is especially 

relevant in non-linear models;  see section 2.4. 

 

The most obvious,  and important,  source of misspecification is selection bias.  Panels,  by 

                                                        
    2  For example,  some cross-section studies carried out by the author appeared to reveal a positive 
relationship between the proportion of manufacturing in GDP and energy consumption in developed countries. 
 A simple panel study using the same data showed a negative relationship,  a reverse of case (b) above.  The 
implication was that the cross-section results were spurious,  arising from significant national differences,  and 
the original model was too crude to pick this up. 
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their very nature,  are more susceptible than other data sets to missing observations,  a problem 

which increases as the panel grows over time.  For example,  consider a two-period panel 

composed of welfare recipients.  Those who remain in the panel for the second period may be 

less "employable",  if those who have found jobs leave the panel.  Whether this attrition is 

random or correlated with the dependent variables is crucial for the results of any estimation.  

At best it reduces efficiency;  at worst,  it can distort results significantly. 

 

This issue is extremely complex for panel models,  and currently unsolved in the general case.  

There is some current research on this issue (see Ridder (1990) and Ritchie (1994) for a 

theoretical treatment;  Bell and Ritchie (1993b,  1994) for a study of selection bias in the 

NES); but even simple static models with multinormal spherical errors present formidable 

computational difficulties.  The applied work for this thesis presents a practical but rather ad 

hoc approach to selection bias. 

 

A second (and much less frequently discussed) source of error peculiar to panels is an 

overdependence on the ability to account for unmeasured variables.  Consider the training 

example taken over two years,  when the underlying "motivation" changes significantly and that 

the change is reflected across all individuals.  Four regression models may be considered: 

for t=1,2,  i=1..N.  (2.2a) and (2.2b) are cross-sectional models;  (2.2c) and (2.2d) are panel 

models.  However,  in (2.2a) and (2.2c) the coefficients are assumed to be constant over time,  

and so only (2.2b) and (2.2d) can identify the structural shift between years one and two.  

Clearly (2.2a) is the most restricted model and (2.2d) the least,  and the performance of the 

estimators will reflect this;  but it is difficult to say whether the flexible cross-section (2.2b) or 

the poorly-specified panel model (2.2c) will perform better.  Chapter nine returns to this in an 

 

u +  + x +  = y  (d)

 u +  + x +  = y  (c)

     u + x +  = y  (b)

      u + x +  = y  (a)
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applied context. 

 

The problem becomes more important when variation in the slope coefficients is allowed.  If 

performance in a training program is improving as recruitment,  teaching and testing methods 

improve,  it may be desirable to allow the slope coefficients to vary over time.  Separate cross-

sections,  such as (2.2b),  allow for this.  So may a panel model,  and one such as(2.2d) is at 

least as efficient as the cross-sections.  However,  the overwhelming majority of models used in 

applied work are of the form of (2.2c) with a time-varying intercept.  If the slope coefficients 

vary significantly the cross-section may give better results.  Relying on the panel attributes of 

parsimonious models instead of using more general specifications can lead to poor outcomes. 

 

This question of misspecification is not limited to panels,  and the particular problems caused 

by the use of panel models do not raise any significant new issues.  A general discussion of the 

misspecification of panel models is beyond the scope of this thesis,  and so is only considered in 

relation to the particular matter at hand.  Unless explicitly stated otherwise,  it is assumed that 

the models are correctly specified. 

 

2.2Fixed and random effects 

 

The unmeasured effects in a panel model structure may be "fixed" or "random" with respect to 

the model.  This has practical and theoretical consequences,  and leads to different models,  

estimation procedures,  and possibilities for inference.  Consider a simple linear panel model: 

In this model,  an individual-specific term is assumed to capture all the omitted information.  µ 

is the mean intercept for all participants;  αi is the individual variation around µ.  This term is 

sometimes called an "incidental parameter",  as the focus of interest is the value of β.  The 

concern about the αi term arises from its effect on the other variables;  identifying its value is 

often not required. 

 εαµβ itiitititit  +  = u     u +  + x = y  (2.3) 
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The individual-specific terms may be deemed "fixed" (that is,   parameters of the model).  They 

then amount to a set of coefficients on individual-specific dummy variables which may be 

estimated by OLS (or any method appropriate to the assumed error structure of εit).  All 

results are then conditional on these parameters.  Note that OLS estimates of the dummy 

coefficients are inconsistent while T remains small (see section 2.3),  but this does not affect 

the consistency of the estimates of β and µ. 

 

However,  if αi is considered "random" (that is,  a random component of the variance of the 

dependent variable),  then autocorrelated residuals from OLS estimates will reflect the 

distribution of both εit and αi.  Note that the error term in (2.3) in vector form becomes, 

where JT is a T-vector of ones.  OLS is unbiased and consistent,  but inefficient unless σα
2 is 

zero (and assuming zero correlation between xit and αi).  GLS solution methods may be used to 

identify the two distributions and estimate (2.3) efficiently. 

 

Section 2.3 concentrates on the practical effect of different assumptions;  for the moment,  

consider the theoretical implications.  The choice is largely a subjective one,  and most texts on 

panel data consider how this choice may be made.  Hsiao(1992) suggests that the key 

theoretical issues come down to (a) what is the purpose of the study?  and (b) what is the 

context of the data? 

 

The argument is usually based around sample versus population study.  If interest lies in the 

characteristics of participants in the sample,  or if the participation list is exhaustive,  then a 

fixed effects model may be most appropriate.  If the aim is to determine population parameters 

from a sample,  then the random-effects specification may be more useful. 
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For example,  in a study of training programmes in different industries over time,  a significant 

 industry-specific effect may be the result of institutionally-based practices.  The size of the 

effect may be useful information in itself,  enabling predictions for each industry and 

facilitating inter-industry comparisons.  In such a case it appears reasonable to treat these 

industry-specific factors as fixed,  and allowing a different constant term for each industry 

captures that effect.  Interest lies in using the heterogeneity as a predictive and explanatory tool 

for the behaviour of individual industries in the sample.  If all industries of interest are included 

in the survey,  then being unable to predict the size of this effect for other industries - a 

consequence of the fixed-effect assumption - is irrelevant. 

 

Alternatively,  consider the effect of training programmes on individuals over time.  It is 

plausible to assume that each employee responds to the programme in a unique manner which 

persists over time.  However,  the interest is less in these individual differences but in the 

overall effect of the programme.  Making general predictions for the programme requires the 

distribution of these individual effects over the workforce.  Accordingly,  the trainees in 

question are assumed to be random drawings from the population of workers with 

correspondingly random unobserved traits.  Then the performance of a new participant on the 

program can be predicted with more confidence than by extrapolation from the specific (fixed) 

heterogeneity of current trainees. 

 

As a third example,   the applied work in this thesis centres around Mincer-type wage 

equations where the worker is the observation unit.  While acknowledging that the NES 

remains a sample drawing,  with hundreds of thousands of individuals appearing in the dataset 

there is some justification for approaching it as a population.  The random-effect and fixed-

effect specifications can both be justified on the population/sample argument.  On the other 

hand,  the unobserved characteristics of each person are of less interest than how these 

characteristics manifest themselves over the populace as a whole.  The aim is to be able to 

make predictions about the population,  not to identify any one particular individual's wage.  
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Thus a random-effects model may be deemed appropriate3. 

 

With heterogeneity over both individuals and time,  a combination of fixed and random effects 

may be employed.  Consider extending (2.2) to include an effect specific to period t,  λt: 

A common specification in applied work is to have one effect fixed and one random;  models 

with both effects fixed or random are less common.  Often this is for practical reasons:  

introducing dummy variables for the "large" dimension may be cumbersome and inefficient,  

whilst random-effects estimation of the "small" dimension tends to be complex and inefficient.  

As panels tend to be "short and fat" (that is,  with T relatively small and N large),  a common 

solution is to estimate random individual effects and to introduce time dummies for the time 

effects. 

 

To some extent this also reflects research interests.  Much panel work is done on micro-data,  

with population inferences being drawn.  There is little interest in the performance of 

individuals as opposed to the whole,  and the number of parameters in a fixed-effects 

specification may be very large.  A better solution is to look for any overall distribution of such 

individual effects. 

 

For time effects the opposite holds:  calculating a "distribution" of time intercepts is likely to be 

fairly meaningless,  but by treating intertemporal differences as parameters of the model there 

is more scope for comparing directly different periods.  Fixed effects are particularly useful 

when slope coefficients are allowed to vary:  the evolution of coefficients through time may be 

very enlightening. 

 

                                                        
    3  In fact,  the estimation method to be discussed uses the fixed-effects method,  for practical reasons 
outlined in the next section,  although knowledge of the individual effects has little practical use. 

 ελαµβ ittiitititit  +  +  = u     u +  + x = y  (2.5) 
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For example,  estimation on the full NES panel has little of interest to say about the 

"motivation" of some hundred thousand individuals;  but an observable shift in the intercept 

over time is of interest.  thus a random individual effect and a fixed time effect appears 

sensible. 

 

All this assumes that the underlying structure of the model is known.  If the true structure is 

unknown,  then the feasibility,  efficiency and consistency of the specifications must be 

considered. 

 

The fixed-effects model is distribution free;  it is conditioned on the extant values for αi without 

the need to describe the source or distribution of this effect.  It is robust to alternative 

specifications of the individual heterogeneity because the distribution function is irrelevant to 

the estimation method. 

 

Estimation of the random effect requires further assumptions about the error terms.  This is not 

necessarily a significant drawback.  Although ML estimation of the specification in (2.3) 

requires a specific functional form for the panel effects,  GLS estimation is feasible and 

practical with merely a consistent estimate of the covariance matrix,  given by fixed-effects 

estimates. 

 

Much more serious is the necessary assumption of independence of the explanatory variables 

and the random effect.  Mundlak (1978) argued that the fixed effects model is conditional on 

the explanatory variables,  and that the random-effects model is a misspecification that fails to 

take account of this conditioning.  An appropriate model should use E(αi | xi).  Replacing αi in 

(2.3) by a linear approximation 

where at is a vector of constants to be estimated, allows for correlation between the 

 ) N(0,        + ax = )x | E( 2
itti

t
ii σωωα ω_′∑  (2.6) 
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unmeasurable and explanatory variables.  Mundlak then suggested restricting the model to a 

function of the mean value of the explanatory variables 

and it can be shown (Hsiao (1986) pp 44-45) that the GLS estimator of β collapses to the 

fixed-effects estimator;  the difference between the "true" and "false" GLS estimates of β is the 

GLS estimate of a.  Therefore,  there are not two models:  the apparent difference is a 

specification error. 

 

In a more general approach,  Chamberlain (1984) notes that,  if  αi is correlated with  (xi1..xiT), 

 yit is potentially a function of all the explanatory variables and any estimator should take 

account of all lead and lag values of xit.  This gives a multivariate regression of all the ys (Tx1) 

on all the xs (TxKT) with an arbitrary error structure:   

where Zi = [xi1 ... xiT].  This is the basis for Chamberlain's "minimum-distance" panel 

estimator,  described in more detail in section 2.6.2. 

 

Mundlak's result depends on the very restrictive assumption of the source of the heterogeneity,  

while Chamberlain's is much more general,  but both raise an important point:  the random 

effects estimator is unbiased and consistent only if the explanatory variables and the 

heterogeneity are independent of each other.  The fixed-effects model,  giving parameter 

estimates conditioned on the explanatory variables,  is unaffected.  This idea of the fixed effects 

model as a conditioning estimator (as opposed to the marginal estimator of the random-effects 

model) acknowledges the fact that the former is valid for both fixed- and random-effects 

specifications4. 
                                                        

    4  Note that,  if the assumption of zero correlation between the explanatory variables and the individual 
heterogeneity is violated,  then cross-section estimates,  which ignore the heterogeneity completely,  will also 
be biased and/or inconsistent. 

 ) N(0,        + ax = )x | E( 2
iiii σωωα ω_′  (2.7) 

 
σ

ζ
2
tsisitit

ittiit

 = )uuE(     0 = )uE(

u + Z = y ′
 (2.8) 



 2  Exploiting Panel Datasets 
 

 

 
 
 20 

 

The fixed-effects estimator is therefore flexible and robust;  however,  generally it is inefficient. 

 This is because the fixed-effects approach seeks to isolate individuals or periods,  and so 

restricts itself to smaller samples relative to the number of parameters to be identified;  the 

random-effects model looks for common characteristics and makes holistic assessments of the 

data.  For example,  as the number of periods shrinks,  making efficient use of information 

across individuals becomes increasingly important;  the large number of parameters to be 

estimated in the fixed-effects model becomes a growing burden.  As N large and T small is a 

common structure for panel datasets,  then a consistent random-effects model is generally more 

efficient.  Taylor (1980) estimated that,  if the assumptions of the random-effects model hold,  

then this construction is more efficient for the cases (T>2, N-K>8) and (T>1,  N-K>9). 

 

2.3Estimation of static linear panel data models 

 

This section is only intended as a brief introduction to some aspects of panel estimation 

methods,  so the mathematics are kept to a minimum and areas covered are selective5.  This 

section concentrates on a few basic models,  with N individuals and T periods,  as the 

qualitative aspects of these carry over in a straightforward manner to more complex 

specifications.  In chapter 5,  the fixed-effects specifications implemented in the analysis 

software will be discussed in more detail. 

 

As focus of the concern here is in illuminating certain aspects of panel models (and not 

developing the econometric methodology),  this section begins with the simplest models.  The 

general linear model is 

                                                        
    5  Full discussion is provided in Hsiao (1986) or Matyas and Sevestre (1992).  In the following discussion a 
balanced panel is assumed;  that is,  Ti=Tj=T for all i, j.  This does not change the results materially. 

 u + x = y itititit β  (2.9) 
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with i=1..N,  t=1..T,  and xit being a (1xK) vector of explanatory variables.  This allows any 

parameter to vary over time and individuals,  giving (NTxK) parameters in NT equations;  the 

model is unidentified without some restrictions on the parameters.  The type of restriction 

imposed can lead to very different models;  so that,  if one is removing or adding variables 

before re-estimating,  the choice of initial model may influence the path taken.  For example,  a 

pooled model on the data in Figure 2.1(d) may indicate that a quadratic form is needed,  

whereas an initial panel specification could indicate that this is unnecessary.  Thus,  while 

panel estimates may be fairly robust in many cases,  this does not obviate the need for general 

tests on the specification of the model. 

 

The simplest parameterisation is the pooled model:  in system form, 

where y,  X and u are stacked to give NTx1,  NTxK,  and NTx1 matrices.  There is assumed to 

be no significant consistent variation in the coefficients.  Separate time-series or cross-section 

estimates give the same result as the pooled model,  but the greater combined number of 

observations in the panel lead to smaller standard errors.  Estimates are consistent whether N,  

T or both tend to infinity.  The estimator is efficient under the assumption that the residual 

errors have no time- or individual-specific element.  If the disturbance is non-spherical for other 

forms of heteroscedasticity or autocorrelation,  any of the usual transformation or estimation 

methods for the particular form of the error terms is appropriate. 

 

2.3.1The covariance approach 

 

A first extension to (2.10) is to let an intercept vary across individuals6,  as in (2.3) above.  For 

true panel specifications,  a number of solution methods become appropriate.  This section 

demonstrates a common approach,  using techniques from variance analysis. 
                                                        

    6  Time-specific effects are dealt with in a qualitatively identical manner.  The relevant equations 
are found by swapping T and N and the t-i subscripts. 

 u + X =y β  (2.10) 
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If the individual variation αi is treated as a fixed effect,  it becomes a parameter to be 

estimated.  A simple solution is to employ N dummy variables,  such that 

where A = [α1 α2 .. αN]',  an Nx1 vector of the individual fixed effects,  IN is the N-element 

identity matrix,  and JT is a T-vector of ones.  Equation (2.11) is known as the least-squares 

dummy-variable (LSDV) estimator.  The N+K parameters in this equation can be estimated by 

OLS7.  This solution has a significant drawback.  Consider the normal equations: 

This requires the potentially formidable task of inverting an (N+K)x(N+K) matrix.  A more 

practical alternative is to take deviations from individual means.  For an individual equation, let 

The individual effect,  constant over time, drops out of the regression.  The system equations 

become 

and the normal equations are now 

which only involves a KxK inversion.  The panel effects can be found from the individual 

means: 

(2.15) is the "within" or "covariance" estimator (from the analysis-of-covariance technique 

                                                        
    7  Note that estimates of the individual-specific effect only become consistent for large T not large N.  The 
estimates of the slope coefficients are consistent for N and/or T large. 

 u + A JI + X =y TN ⊗β  (2.11) 
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used).  The estimated slopes in (2.15) are BLUE and consistent if N and/or T is large;  

however,  the estimates of the individual intercepts,  while unbiased,  are not consistent unless 

T is large.  Expanding (2.16): 

As E(uit) = 0,  the estimate of  αi is unbiased,  but remains inconsistent unless T→∞ as 

This is because the number of parameters to estimate increases with N and there remains 

insufficient variation amongst individuals to uncover heterogeneity whilst T is small. 

 

Now consider random effects,  distributed over individuals according to some function.  The 

random individual effects and the residual errors have to be estimated together.  Define 

Other covariances are zero.  The structure of the covariance matrix for an individual is 

This is called the "variance components" or "error components" model,  for obvious reasons.  

OLS is inefficient,  as the error terms vit,vis are serially correlated.  However,  GLS is both 

feasible and practical.  Under the assumptions of (2.19) the covariance matrix for the 

regression is block-diagonal,  as is its inverse: 

with 
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The first part in the inverted variance term calculates deviations from the mean of any matrix 

to which it is applied;  it is the same matrix used to generate the within estimator,  βw.  The 

second part calculates the mean of a matrix and multiplies it by a constant which reflects the 

relative variances of the two error components.  The normal equations for the GLS solution are 

The covariance matrix,  and thus the solution for β, contains two additive terms. The structure 

in (2.22) indicates one term should reflect "within-group" variation,  and the other the 

differences between group means - "between-group" variation.    It can be shown (see,  for 

example,  Hsiao (1986) pp34-41) that the GLS solution breaks down  into 

where the "between" estimator 

is calculated by taking the deviations of inter-group means from the whole mean of the 

regression.  The GLS estimate is a weighted average of the within and between estimators,  

with the weights given by 

The between estimator,  showing the inter-individual variation,  is effectively the OLS estimate 

on the data,  ignoring all panel aspects.  The weighting is provided by the relative importance 

of the error components and the size of T.  If T is one or if σu
2 is very large relative to σα

2,  
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then the weights are allocated evenly between the two estimators,  and the pooled OLS estimate 

results.  In this case either variation among the observations for an individual is small or the 

number of observations for an individual is small;  random variation between individuals is the 

dominant force.  Alternatively,  if σα
2 or T is large,  the within estimator dominates.  If σα

2 is 

large,   then individuals are sufficiently different to make separate estimation on each individual 

a sensible strategy.  If T is large,  between-group variation becomes irrelevant:  there are 

enough observations for each individual to be treated as a separate model.  Each αi can be 

thought of as drawn once (randomly) and then fixed for N sample drawings which are large 

enough to be estimated separately. 

 

Feasible estimation of (2.23) requires known or consistently estimated error components.  

Consistent estimates are given by the residuals from separate covariance and pooled OLS 

regressions.  The error components model can also be estimated by ML.  When T is small and 

N large,  this method is wholly consistent;  however,  if N is small and T large,  the estimate of 

σα is inconsistent.  When T is large,  the model becomes a series of N separate regressions;  the 

ML estimate collapses to the covariance estimator (see Hsiao (1986) for details). 

 

The covariance estimator can be used on the random effects model;  obviously,  the 

transformation removes the individual effect whatever its nature.  For large T the two 

estimators coincide,  but by ignoring the information on within-group variance rather than 

using it,  the covariance estimator of a random-effects model is less efficient than an error 

components model when T is small.  However,  the random-effects model requires zero 

correlation between the error-component and the explanatory variables for consistency and 

unbiasedness.  This is not an issue for the fixed-effects model as the estimates are conditioned 

on the parameters.  Thus covariance estimation of a random-effects model may be consistent 

when GLS estimation is not. 

 

(2.11) is the simplest of panel models and can be expanded in many ways.  Consider adding 



 2  Exploiting Panel Datasets 
 

 

 
 
 26 

time- or individual-specific variables;  that is,  the coefficients are common to all,  but the 

variables are not: 

zi is a vector of individual data which does not change over time.  In this model,  a fixed αi 

cannot be separated from the coefficient zi if the covariance transformation is used.  Random 

effects can still be identified.  The minimum-distance estimator of Chamberlain (1984) uses 

invariant individual-specific vectors for its initial estimates of the parameters. 

 

Another simple extension is to have both time- and individual-specific effects: 

This presents no new qualitative aspects.  If both effects are fixed,  then some restrictions are 

needed to prevent exact collinearity between the dummies.  If both effects are random,  then a 

variance component for time has to be calculated.  This requires a third, "between-periods" 

estimator,  which is the equivalent of the between-groups estimator used to find the individual 

variance. 

 

However,  the quantitative effects of incorporating more fixed or random variables are quite 

different,  especially if the panel is unbalanced (that is,  individuals have different numbers of 

observations).  Adding time dummies is a straightforward matter and the balance of the panel 

has little practical effect.  However,  calculating a new error-component is complex,  and if the 

panel is unbalanced the problem is significantly harder.  Generalising (2.22) for unbalanced 

panels merely requires the substitution of Ti for T,  but the three-component equivalent of 

(2.22) has six additive terms;  with unbalanced panels the inverse is exceedingly complex8. 

 

In addition to the theoretical considerations introduced in section 2.2,  two additional elements 

                                                        
    8  See Wansbeek and Kapteyn (1989) for the solution to the unbalanced three-component inverse. 

 u +  +  + z + x = y itiiitit αµδβ  (2.27) 

 u +  +  +  + x = y ittiitit λαµβ  (2.28) 
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have been introduced.  First,  the covariance estimator is consistent (if not necessarily efficient) 

under a wider range of assumptions.  Secondly,  the covariance estimator is easier to estimate 

than the random effects one.  The practical differences increase if the panel is unbalanced.  If 

the efficiency loss is small,  or if collinearity between the individual heterogeneity and the 

explanatory variables is suspected,  then the error-components model loses its appeal.  The 

implication for the choice of fixed or random effects estimators is clear: the fixed-effects 

specification,  although inefficient,  is both tractable and robust. 

 

Linear panel models more complex than those discussed above add little to the methodological 

issues raised,  and are not considered here.  However,  three general features of linear models 

can be identified.  Firstly,  the dichotomy between fixed and random effects remains strong as 

models become more complex.  Although some solution methods,  such as analysis of 

covariance,  may be applicable to both,  the results for one or other assumption are general 

sub-optimal in some way.  This is because the choice of random or fixed effects leads to 

qualitatively different assessments of intergroup or interperiod influences;  applying one model 

to both hypotheses implies either irrelevant or relevant but unused information. 

 

Secondly,  the general structure of the solutions outlined persists.  The fixed-effects 

specification may be seen as a question of effective use of dummy variables or covariance 

transformations.  The random-effects model has a complex error structure requiring GLS or 

ML estimation.  Choice of fixed or random effect determines the whole approach to estimation. 

 

Thirdly,  the more complex the models,  the bigger the practical advantage of the fixed-effects 

approach.  The difficulties of estimating fixed-effects models increase arithmetically with the 

complexity of the models;  for random -effects,  the relationship is more closely exponential.  

While the fixed-effects model does involve lots of 'incidental' parameters,  generally the model 

can be transformed to remove these effects9.  Although the number of parameters in the 

                                                        
    9  Often a combination of dummy variables and transformations is used.  In the models to be described in 



 2  Exploiting Panel Datasets 
 

 

 
 
 28 

random-effects model rises much more slowly,  isolating the distribution of these effects 

becomes increasingly problematic. 

 

2.3.2The differencing approach 

 

Where there is only one random effect,  differencing of the equations is a practical alternative 

to the covariance approach.  In both (2.11) and (2.19),  differencing removes the individual-

specific effect: 

with E(uit)=0.  Estimation can then proceed as usual.  When T=2,  the differencing approach 

and the covariance estimator coincide. 

 

Differencing has significant advantages over the covariance estimator in dynamic linear 

models,  to be detailed below.    It also shares the distributional advantage of the covariance 

estimator:  namely,  that no distribution for the individual effect needs to be specified and that 

any correlation between the individual-specific effect and the other explanatory variables will 

not lead to inconsistent or biased estimators.  However,  for static models it is less appealing. 

 

Firstly,  the differencing estimator is less efficient than the covariance estimator - compare 

(5.90) and (5.124) for the expected variance of the regression.  This is because,  although both 

models involve N restrictions on the model,  yi1 and yiT each only contribute once to the 

information set of the differencing estimator,  whereas all observations contribute equally to the 

covariance estimator. 

 

Secondly,  differencing is clearly not appropriate for a random-effects specification.  The 

implication of the differencing approach is that the individual effects are fixed nuisance 

                                                                                                                                       
chapter 5,  individual effects are transformed out while dummies are used for time effects. 

 u + x    u - u + )x - x( = y - y    y itit1-itit1-itit1-ititit
~~~ ββ ≡≡  (2.29) 
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parameters to be removed before estimation of the main coefficients proceeds.  Thus,  for a 

random-effects specification,  differencing will be less efficient than GLS estimation for the 

same reason that the fixed-effect covariance estimator is inefficient. 

 

Thirdly,  the estimates of the differencing approach are less amenable to interpretation if the 

coefficients are allowed to vary over time.  Consider 

Estimation of this equation by differencing leads to the model 

wherey it≡yit-yit-1 and the other variables are similarly defined (see equation (5.129) for details). 

 For the slope coefficients both levels and differences in the coefficients are being estimated,  

and with a little manipulation all the slope coefficients are identifiable.  However,  only the 

change in the time intercept is being estimated,  and so only the relative values of the constant 

(relative to either λ0 or λT) can be identified from the model.  The levels of the intercepts can of 

course be recovered from the equations by calculating the predicted means of the regression for 

one period  but the fact that the returned coefficients are changes rather than levels seems to be 

ignored by most authors10.  Section 5.4 discusses this issue and a restricted approach which 

falls between the models of (2.29) and (2.30). 

 

2.4Non-linear models 

 

Allowing for individual heterogeneity has serious disadvantages when a non-linear functional 

form is specified.  Because of the additive nature of the linear equation,  estimation of the main 

coefficient vector and the panel effects could be separated,  for example by covariance or GLS 

estimation.  Under a non-linear specification,  this may no longer be possible. 

                                                        
    10  For example,  the GAUSS program DPD returns "intercepts";  the fact that only T-1 are returned 
indicates that these are actually changes in the intercept. 

 u +  +  + x = y ittititit λαβ  (2.30) 

 u +  + x + x = y ittt1-ittitit
~~~~~ λββ  (2.31) 
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Take a more general form of (2.5): 

where F(...) is some function non-linear in the parameters.  As mentioned earlier,  if the panel 

terms to be fixed coefficients,  these will only be estimated consistently if the right "dimension" 

of the panel is large;  that is,  a consistent estimate of a time-specific effect requires large N,  

and a consistent estimate of an individual-specific effect needs large T. 

 

Assuming a typical panel structure with T small and N large,  consistent estimates of λt are 

possible but not αi
11.  In a linear regression with additive terms this does not affect the 

consistency of the main parameter estimates.  However,  (2.32) involves maximising the joint 

probability of all the parameters,  and so inconsistent estimates of the incidental parameters 

will lead to the main parameters being inconsistently estimated (see Hsiao (1986) pp159-161 

for an example). 

 

This problem was considered in some detail by Neyman and Scott (1948),  who suggested 

finding alternative functions for the main parameters which are independent of the incidental 

parameters12.  Hsiao (1986) illustrates some simple cases,  but notes that in general such 

functions are difficult to find.  Perhaps most importantly,  there does not seem to be one for the 

probit model;  that is,  there is no consistent estimator for small T for a fixed individual-effect 

probit model. 

 

An alternative is to use a random-effects model,  leading to a multivariate non-linear regression 

model with the likelihood function of the main parameters augmented by the marginal 

                                                        
    11  This is for the same reason as in the linear case;  namely,  that there are insufficient observations on each 
individual,  but there are a large number of observations for each period. 

    12
  An alternative under investigation by the author is to use linear approximations to the non-linear 

functions;  for example,  replacing a probit or logit form with a linear probability model. 

 ) , , , ,xF( = y tiitit λαµβ  (2.32) 
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distribution of the random effects.  The random-effects specification does at least provide 

consistent estimators,  and simplifying assumptions can be made to reduce some of the 

complexity of the models (see Hsiao (1986) pp164-167).  It has the obvious disadvantage of 

needing a specific distribution for the random effect.  There is also the potential for correlation 

between the random effects and the explanatory variables,  which is less easy to resolve than in 

the linear case:  using the linear specifications of Mundlak (1978) or Chamberlain (1984) may 

impose unwarranted restrictions on a non-linear model. 

 

Thus,  fixed-effects models are relatively simple but may not provide consistent estimates of 

any parameters.  In contrast,  random-effects estimates are consistent,  but only as long as 

assumptions on the distribution and independence of the effects is justified. 

 

2.5Dynamic panel estimators 

 

Dynamic panel models can be extremely informative.  Apparent dynamic effects could result 

from heterogeneity,  serial correlation,  or (in the case of non-linear models) state dependence.  

Consider finding that a candidate who has passed one exam is more likely to pass another.  

This could be because candidates differ in their abilities (heterogeneity);  because those who 

pass have acquired (randomly) some extra knowledge which is useful in both exams (serial 

correlation);  or because those who pass avoid resits and so have more time to study for 

remaining exams ("true" state dependence).  If a dynamic model can be constructed,  then 

testing for combinations of these various forms of true and spurious state dependence is a 

possibility. 

 

2.5.1Linear models 

 

Dynamic models for panels are more complex than static ones.  The reason is the initial 

condition of the dependent variable.  Let 
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yit and yit-1 depend on αi,  which implies that the initial condition yi0 does too - and,  potentially, 

 so does the entire pre-sample history.  The problem is to remove or control for the individual-

specific effect without introducing correlation between the dependent variable and the error 

term.  For example,  taking first-differences of (2.33) leads to 

where the individual effect has been removed,  but the error term is now correlated with the 

explanatory variables as E(yit-1εit-1)≠0. 

 

Consistent ML and GLS estimates may be available for a range of assumptions about the 

initial conditions.  However,  a relatively simple and popular solution to this problem is to 

difference the model,  as in (2.34),  and then use instrumental variables estimation.  The panel 

structure itself provides instruments in the form of lagged or lagged-differenced dependent 

variables,  an instrument set which grows over time as more lagged variables become available 

(Arellano and Bond (1991)).  Unbiased and consistent estimators therefore exist for both the 

fixed and random effects. 

 

The dynamic specification has received some criticism.  The use of lagged dependent variables 

as instruments has been criticised on the grounds of a poor correlation over the long lags 

necessary to instrument differenced models.  More fundamentally,  it has been suggested that 

variable-coefficient models which take account of cross-period correlation a more general way, 

 such as (2.8) or (2.30),  offer both flexibility and consistency without the need for 

instrumentation (Chamberlain(1984)). 

 

This thesis does not intend to discuss the relative merits of these two approaches.  Both IV 

estimates of (2.34) and more general variable-coefficient  models are available under the 

software to be described later.  However,  most of the applied work on the NES by the author 

 ελαµγβ ittiitit1-ititit  +  +  = u     u +  + y + x = y  (2.33) 

 ) - ( + ) - ( + )y - y( + )x - x( = )y - y( 1-itit1-tt2-it1-it1-itit1-itit εελλγβ  (2.34) 
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and others has utilised cross-sectional analysis or the variable-coefficients approach. 

 

2.5.2Non-linear models 

 

Estimation of the linear dynamic model is relatively straightforward.  This is not the case for 

non-linear specifications.  Consider the dynamic non-linear form: 

where F(...) is once again some arbitrary non-linear function.  In this case the panel model runs 

into severe difficulties.  The problem,  as for the linear dynamic model,  is the determination of 

initial conditions,  but it has been complicated by the non-separability of the terms in the model 

as discussed in section 2.4.  If the parameter estimates are jointly calculated,  then estimates of 

the initial conditions also need to be jointly calculated.  Unlike the models in section 2.5.1,  the 

incidental parameters can no longer be divorced from the ones of interest - and therefore 

estimation of the initial conditions (and possibly pre-sample history) must be included in the 

maximisation procedure. 

 

On the assumption that the panel effects are fixed,  the earlier conclusion that the ML estimates 

are inconsistent as long as T is small still holds.  Moreover,  Monte Carlo tests by Heckman 

(1981b) suggest that this inconsistency seems much more significant than for the static case 

discussed above. 

 

The random-effects assumption needs information in yi0,  just as for the linear case.  Unless yi0 

is assumed to be independent of αi,  the marginal distribution of αi needs to be integrated over 

yi0 as well;  therefore information on yi0 is needed.   And if yi0 is to be calculated,  this may 

require information on yi-1,  yi-2,  etcetera if they too depend on αi.  Solutions to this issue have 

been suggested,  but they are all unsatisfactory for one reason or another13.  At the time of 

                                                        
    13

  Suggestions including assuming that the initial conditions are truly exogenous and independent of αi,  or 
assuming that the pre-sample process is in equilibrium.  Both these assumptions are very strong and hard to 

 ) , , , ,y ,xF( = y ti1-ititit λαµβ  (2.35) 
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writing there appears to be no general consistent estimator for dynamic non-linear models. 

 

2.6General estimation techniques 

 

In recent years there has been some interest in more generalised estimation methods.  Two of 

these techniques are briefly considered here. 

 

2.6.1Generalised method of moments (GMM) 

 

GMM developed in the early eighties as a unifying approach to a wide range of problems14.  Its 

name comes from estimators derived by minimising a set of moments conditions in a quadratic 

form.  As such it shares characteristics with 'traditional' methods such as OLS,  but the 

minimisation criterion is specified in such a way that wide range of problems may be treated 

within the same overall framework.  Thus OLS,  linear and non-linear IV,  GLS,  etcetera can 

be seen as restricted versions of the same basic estimator.  A properly-specified GMM 

estimator is consistent and efficient. 

 

GMM has found a strong foothold in the estimation of time series models.  In panel models its 

main application has been in the area of linear dynamic models,  particularly in the 

methodology of Arellano and Bond (1991).  Their estimation program,  DPD,  uses the GMM 

nomenclature in allowing for a range of dynamic specifications and has had a notable impact in 

some areas of econometrics. 

 

Because GMM is largely a unifying terminology until the appropriate functional forms are 

specified,  GMM as an estimation method per se will not be pursued.  The techniques in this 

                                                                                                                                       
justify in applied work.  Heckman (1981b) drops the pretence of consistency altogether and instead offers 
relatively practical approximating solution. 

    14  Hall (1993) and Ogaki (1993) provide comprehensive surveys of GMM techniques and applications. 
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thesis can be seen as GMM estimators subject to known restrictions (for example,  the linear 

IV model and Sargan's test are expounded using the GMM terminology),  but this is a 

methodological issue.  All of the methods used have been chosen for their practicality without 

reference to an overall framework. 

 

2.6.2Minimum-distance estimation (MDE) 

 

Chamberlain's (1984) minimum-distance estimator is a general estimator in that it allows for a 

variety of specifications.  While GMM and MDE both emphasise flexibility in the functional 

forms,  MDE aims to provide robust and efficient estimation of unknown specifications rather 

than an efficient technique for known problems. 

 

The starting point is the recognition that a random individual-specific effect could be correlated 

with any or all of the explanatory variables,  and therefore a proper specification for a random-

effects model should be 

where Zi is a 1xKT vector of all the x variables,  as in (2.8).  Moreover,  the variance of uit 

should be generously specified given the potential for heteroscedasticity and (particularly) 

autocorrelation in a panel dataset.  Given these requirements,  Chamberlain recommends 

estimating T separate equations of the form 

Define Π' = [π1' ... πT'].  Then,  for a general specification of Var(uit),   the separate estimates 

of πt are asymptotically normally distributed with mean Π and variance given by the covariance 

matrix of these separate estimates.  This information is then used in a second stage regression 

to impose restrictions on the structure of Π in a manner analogous to that of simultaneous 

equation systems or GMM methods. 

 

 u + Z + x = y itiitit ζβ ′  (2.36) 

 u + Z = y ittiit π′  (2.37) 
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The slope coefficients in (2.36) may be allowed to vary over time,  which makes the second-

round estimates more complex but otherwise has little effect on the technique.  This approach 

can also be applied to the non-linear counterpart of (2.36),  with appropriate adjustments.  

However,  the linear specification of the panel effect does imply a restriction on non-linear 

models,  which may or may not be warranted. 

 

MDE is very flexible as it places no restrictions on the error terms;  it therefore has relatively 

low information requirements and is robust to the specification of uit.  However,  the price paid 

is that MDE is only efficient within a class of estimators imposing no restrictions on the error 

term.  Any prior knowledge about the true distribution of the error term implies a more efficient 

estimator exists. 

 

A second difficulty with MDE is the large number of parameters to be investigated as T grows. 

 This is a particular problem if N is relatively small or K large.  Clearly,  MDE is also unlikely 

to be attractive for random time-effects which would involve a matrix inversion of order NK.  

However,  the variable-coefficient fixed-effects estimator to be described in Chapter 4 shares 

many features with MDE (including the data requirement),  and it seems likely that MDE is a 

practical option15. 

 

2.7Summary 

 

As discussed in section 2.1,  the panel structure allows for a much richer range of models.  

However,  it is apparent that the usefulness of the more complex panel models is restricted by 

the feasibility of the estimator.  This is especially true of non-linear models.  The rest of this 

thesis is concerned with static,  linear models,  as estimators for these have been implemented 

in the analysis program to be outlined in chapters 5 and 6.  The rationale for this decision is 

                                                        
    15

  The possibility of implementing this estimator in the NES analysis software is currently being 
investigated. 
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examined in chapter 4. 


